Test Booklet Code

DEF

No.: 4165746

This Booklet contains 20 pages.

Do not open this Test Booklet until you are asked to do so.

Important Instructions:

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- The test is of 3 hours duration and Test Booklet contains 180 questions. Each question carries 4 marks. For
 each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted
 from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must handover the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- The CODE for this Booklet is Q. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same
 as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the
 Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/ Answer Sheet.
- Use of white fluid for correction is NOT permissible on the Answer Sheet.
- Each candidate must show on demand his/her Admission Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

OTE: The information provided here, is for Reference, It may vary Original

Which of the following compounds will undergo racemisation when solution of KOH hydrolyses?

- CH2CI
- (ii) CH2CH2CH2CI
- CH2 (iii) H₂C-CH-CH₂CI

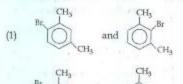
(iv)

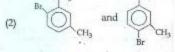
- (1) (ii) and (iv) (2)(iii)and (iv)
- (i) and (iv) (4)(i) and (ii)
- The reaction of aqueous KMnO₄ with H₂O₂ in acidic conditions gives:
 - (1) Mn2+ and O2
 - Mn2+ and Oa (2)
 - Mn4+ and MnO2 (3) Mn4+ and O2
 - Which one of the following is not a common component of Photochemical Smog?
 - (1)Acrolein
 - (2)Peroxyacetyl nitrate,
 - (3)Chlorofluorocarbons
 - (4) Ozone
 - Which of the following will be most stable diazonium salt RN2 X ?
 - C6H5 N2 X
 - CH₃ CH₂ N₂ X (2)

(3) C6H5 CH2 No X

- CH, No X
- 5. Which of the following hormones is produced under the condition of stress which stimulates glycogenolysis in the liver of human beings?
 - (1) Insulin
 - (2)Adrenaline
 - (3)Estradiol
 - (4)Thyroxin

F 6.


1.0 g of magnesium is burnt with 0.56 g O2 in a closed vessel. Which reactant is left in excess and 100 Hg +02 5 Ma how much? (At. wt. Mg = 24; O = 16) O2, 0.16 g


Mg, 0.44 g O2, 0.28 g

(4) Mg, 0.16g

7. What products are formed when the following compound is treated with Br, in the presence of FeBra?

- Which of the following organic compounds polymerizes to form the polyester Dacron?
 - c (1) Benzoic acid and ethanol
 - (2)Terephthalic acid and ethylene glycol
 - Benzoic acid and para HO-(C6H4)-OH (3)
- (4) Propylene and para $HO - (C_6H_4) - OH$
- In acidic medium, H2O2 changes Ct2O22 to CrO5 9. which has two (-O-O-) bonds. Oxidation state of Cr in CrOs is:
 - (1)
- 21-10: +3
 - (2) +6

(3)

- -10

10.	Which of the following orders of ionic radii is
	correctly represented?

- Na+>F-> O2

- Which of the following salts will give highest pH in
 - NaCI. (1) Na₂CO₃
 - CuSO, (3)
 - (4) KC1
- Which of the following will not be soluble in sodium 12. hydrogen carbonate? 2.Manzos
 - Benzoic acid o-Nitrophenol
 - (2)(3) Benzenesulphonic acid
 - 2, 4, 6 trinitrophenol (4)

For the reaction: 13.

 $X_2O_4(l) \longrightarrow 2 XO_2(g)$ $\Delta U = 2.1 \text{ k cal}$, $\Delta S = 20 \text{ cal K}^{-1} \text{ at } 300 \text{ K}$

- Hence, AG is:
- -2.7 k cal (2) 9.3 k cal -9.3 k cal
- 2.7 k cal In the following reaction, the product (A) 14.

Using the Gibbs energy change, $\Delta G^{\circ} = +63.3 \text{ kJ}$, for 15. the following reaction, $Ag_2CO_3(s) = 2Ag^+(aq) + CO_3^{2-}(aq)$

the K_{sp} of Ag₂CO₃(s) in water at 25°C is : $(R=8.314 \text{ J K}^{-1} \text{ mol}^{-1})$

 8.0×10^{-12}

- 2.9×10^{-3} (3)
 - 3.2×10^{-26} (4)
- Identity Z in the sequence of reactions (CA) Gets 16. CH3CH2CH=CH2 HBr/H2O2 CH2CHBONa
 - (CH₃),CH₂-O-CH₂CH₃
 - CH3(CH3)4-0-CH3 CH₃CH₂-CH(CH₃)-O-CH₂CH₃
 - CH3-(CH2)3-0-CH2CH3
- In the Kjeldahl's method for estimation of nitrogen 17. present in a soil sample, ammonia evolved from 0.75 g of sample neutralized 10 mL of 1M H2SO4. The percentage of nitrogen in the soil is:
 - 45.33 1. 32 XTO 35.33 37,33
- 18. Which property of colloids is not dependent on the charge on colloidal particles?
 - Electrophoresis
 - Electro-osmosis (2)
 - (3) Tyndall effect Coagulation (4)
- For a given exothermic reaction, Kp and Kp are the 19. equilibrium constants at temperatures T1 and T2, respectively. Assuming that heat of reaction is constant in temperature range between T1 and T2, it is readily observed that:

Q

When 22.4 litres of H₂(g) is mixed with 11.2 litres of 20. Cl2 (g), each at S.T.P., the moles of HCI (g) formed is equal to :

- (1) 2 mol of HCI(g)
- (2) 0.5 mol of HCI (g)
- (3)1.5 mol of HCl (g)
- 1 mol of HCI(g)

Which one of the following is an example of a 21. thermosetting polymer?

(1)
$$+CH_2-CH_{\uparrow_n}$$

C1 $+CH_2-CH_{\uparrow_n}$
(2) $+N-(CH_2)_6-N-C-(CH_2)_4-C_{\uparrow_n}$
OH OH

Which one is most reactive towards Nucleophilic addition reaction?

Calculate the energy in joule corresponding to light 23. of wavelength 45 nm : (Planck's constant $h = 6.63 \times 10^{-34} \text{ Js}$; speed of light $c = 3 \times 10^8 \text{ ms}^{-1}$)

- 6.67×10^{11}
- 4.42×10-15 (2)
- 4.42×10-18
 - 6.67×10^{15}

Which of the following organic compounds has 24. same hybridization as its combustion product-(CO2)?

- Ethyne (1) Ethene
- (2) Ethanol (3)
- Ethane (4)

Be2+ is isoelectronic with which of the following ions?

- ar Li+ Na+
 - Mg2+
- Magnetic moment 2.83 BM is given by which of the 26. following ions?

(At. nos. Ti = 22, Cr = 24, Mn = 25, Ni = 28)

The weight of silver (at.wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of

O2 at STP will be: (1 10.8 g

27.

- 54.0 g
- 108.0 g (3)
- (4) 5.4 g

For the reversible reaction: 28. $N_2(g) + 3H_2(g) = 2NH_3(g) + heat$ The equilibrium shifts in forward direction:

- by decreasing the pressure
- by decreasing the concentrations of N2(g) and $H_2(g)$
- by increasing pressure and decreasing temperature
 - by increasing the concentration of NH3(g)

29. The pair of compounds that can exist together is:

- HgCl2 SnCl2
- FeCl₂ SnCl₂ (2)
- FeCl₂ KI
- (4) FeCla SnCla

Which of the following complexes is used to be as an anticancer agent?

(I) cis-[Pt Cl2 (NH3)2]

- cis K2[Pt Cl2 Br2]
- Na₂CbCl₄
- (4) mer [Co (NH₃)₃ Cl₃]

Among the following complexes the one which 31. shows Zero crystal field stabilization energy (CFSE)

- [Fe(H2O)6]3+

- If a is the length of the side of a cube, the distance between the body centered atom and one corner atom in the cube will be:
 - (1) $\frac{4}{\sqrt{3}}$ a (2) $\frac{\sqrt{3}}{3}$ a
- 13959
- (3) $\frac{\sqrt{3}}{2}a$
- (4) $\frac{2}{\sqrt{3}}$ a
- 33. Which one of the following species has plane
 - triangular shape?

 (1) $\frac{NO_3}{NO_2}$ (2) $\frac{2}{NO_2}$ (3) $\frac{CO_{2N}}{NO_3}$ (4) $\frac{CO_{2N}}{NO_3}$ (5) $\frac{CO_{2N}}{NO_3}$ (6) $\frac{CO_{2N}}{NO_3}$ (7) $\frac{CO_{2N}}{NO_3}$ (8) $\frac{CO_{2N}}{NO_3}$ (9) $\frac{CO_{2N}}{NO_3}$
- 34. Which of the following molecules has the maximum dipole moment?
 - (1) CH₄ (2) NH₃
 - (3) NF₃ (4) CO₂ 8 2
- Acidity of diprotic acids in aqueous solutions increases in the order:
 - (1) H₂Se < H₂S < H₂Te (2) H₂Te < H₂S < H₂Se
 - (3) H₂Se < H₂Te < H₂S
 - (4) H₂S < H₂Se < H₂Te
- Reason of lanthanoid contraction is:
 - (2) Decreasing nuclear charge
 - (3) Decreasing screening effect
 - (4) Negligible screening effect of 'f' orbitals
- Which of the following statements is correct for the spontaneous adsorption of a gas?
 - ΔS is negative and therefore, ΔH should be highly negative.
 - (2) ΔS is positive and, therefore, ΔH should be negative.
 - (3) ΔS is positive and, therefore, ΔH should also be highly positive.
 - (4) ΔS is negative and, therefore, ΔH should be highly positive.

- Artificial sweetner which is stable under cold conditions only is :
 - (1) Sucralose
 - (2) Aspartame (3) Alitame
 - (4) Saccharine
- Equal masses of H₂, O₂ and methane have been taken in a container of volume V at temperature 27°C in identical conditions. The ratio of the volumes of gases H₂: O₂: methane would be:
 - (1) 16:8:1
 - (2) 16:1:2 (2) 8:1:2
 - (4) 8:16:1
- 40. (a) $H_2O_2 + O_3 \rightarrow H_2O + 2O_2$
 - (b) H₂O₂+Ag₂O → 2Ag+H₂O+O₂ Role of hydrogen peroxide in the above reactions is respectively:
 - reducing in (a) and oxidizing in(b)
 - (2) reducing in (a) and (b)(3) oxidizing in (a) and (b)
 - (4) oxidizing in (a) and reducing in (b)
- 41. Among the following sets of reactants which one produces anisole?
 - (1) C₆H₅OH; NaOH; CH₃I
 - (2) C₆H₅OH; neutral FeCl₃
 (3) C₆H₅ CH₃; CH₃COCl; AlCl₃
 - (4) CH₂CHO; RMgX
- 42. When 0.1 mol MnO₄²⁻ is oxidised the quantity of electricity required to completely oxidise MnO₄²⁻ to MnO₄⁻ is:
 - (1) 2×96500 C
 - (2) 9650 C
 - (3) 96.50 C
 - (4) 96500 C
- 43. Of the following 0.10 m aqueous solutions, which one will exhibit the largest freezing point depression?
 - (1) $C_6H_{12}O_6$
 - (2) Al₂(SO₄)₃
 - (3) K₂SO₄
 - (4) KCI
- 44. What is the maximum number of orbitals that can be identified with the following quantum numbers?
 - numbers ? $n=3, l=1, m_l=0$ (1) 2
 - (1) 2
- 95
- 1:00

 D(+) glucose reacts with hydroxyl amine and yields an oxime. The structure of the oxime would be:

CH=NOH HO-C-H HO-C-H H-C-OH

(I) H-C-OH H-C-OH CH₂OH

> CH=NOH HO-C-H H-C-OH

(2) HO-C-H H-C-OH CH₂OH

> H-C-OH HO-C-H H-C-OH H-C-OH CH₂OH

CH=NOH

CH=NOH H-C-OH HO-C-H HO-C-H

(4) HO-C-H H-C-OH CH₂OH

- (46.) Five kingdom system of classification suggested by R.H. Whittaker is **not** based on:
 - Mode of reproduction.
 - (2) Mode of nutrition.
 - (3) Complexity of body organisatoin.
 - Presence or absence of a well defined nucleus.
- 47. The main function of mammalian corpus luteum is to produce:

progesterone

- (2) human chorionic gonadotropin
- (3) relaxin only
- (4) estrogen only

48.

In which one of the following processes CO₂ is not released?

- Aerobic respiration in animals
- (2) Alcoholic fermentation
- (3) Lactate fermentation
- Aerobic respiration in plants

49. Choose the correctly matched pair:

Moist surface of buccal cavity - Glandular epithelium

- Tubular parts of nephrons Cuboidal epithelium
- Inner surface of bronchioles squamous epithelium
- Inner lining of salivary ducts Ciliated epithelium
- 50.) Which of the following shows coiled RNA strand and capsomeres?

1 Tobacco mosaic virus

- (2) Measles virus
- (3) Retrovirus
- (4) Polio virus
- Just as a person moving from Delhi to Shimla to escape the heat for the duration of hot summer, thousands of migratory birds from Siberia and other extremely cold northern regions move to:
 - (1) Meghalaya
 - (2) Corbett National Park
 - (3) Keolado National Park
 - (4) Western Ghat
- You are given a fairly old piece of dicot stem and a dicot root. Which of the following anatomical structures will you use to distinguish between the two?
 - (1) Secondary phloem
 - (2) Protoxylem
 - (3) Cortical cells
 - (4) Secondary xylem
- In 'S' phase of the cell cycle:
 - amount of DNA remains same in each cell.
 - chromosome number is increased.
 - (3) amount of DNA is reduced to half in each cell.

(4) amount of DNA doubles in each cell.

Identify the hormone with its correct matching of source and function:

Melatonin - pineal gland, regulates the normal rhythm of sleepwake cycle,

Progesterone - corpus-luteum, stimulation of growth and activities of female secondary sex organs.

Atrial natriuretic factor - ventricular wall (3)increases the blood pressure.

Oxytocin - posterior pituitary, growth and (4) maintenance of mammary glands.

An example of edible underground stem is:

Groundnut

Sweet potato

Potato

Carrot (4)

Which of the following causes an increase in sodium reabsorption in the distal convoluted tubule?

Increase in antidiuretic hormone levels (1)

Decrease in aldosterone levels (2)

Decrease in antidiuretic hormone levels (3)

Increase in aldosterone levels

Which structures perform the function of mitochondria in bacteria?

> Ribosomes (1)

Cell wall (2)

Mesosomes

Nucleoid

Select the option which is not correct with respect to

Addition of lot of succinate does not reverse the inhibition of succinic dehydrogenase by

A non - competitive inhibitor binds the enzyme at a site distinct from that which binds the substrate.

Malonate is a competitive inhibitor of succinic dehydrogenase.

Substrate binds with enzyme at its active site.

Which is the particular type of drug that is obtained from the plant whose one flowering branch is shown below?

(1)Depressant

Stimulant

Pain - killer (3)

Hallucinogen

Fructose is absorbed into the blood through mucosa. 62. cells of intestine by the process called:

> facilitated transport (1)

simple diffusion

co-transport mechanism (3)

active transport (4)

63. The solid linear cytoskeletal elements having a diameter of 6 nm and made up of a single type of monomer are known as:

Microfilaments

Intermediate filaments (2)

Lamins (3)

(4)

Microtubules

Ma

to

er.

ier

da.

cal

the

each

	hich one of the following living organisms	8	
co	empletely lacks a cell wall?	70. CI	hoose the correctly matched pair:
(1)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	Adipose tissue - Dense connective tissue
(2)	, , , , , , , , , , , , , , , , , , ,	(2)	
(3)		(3)	
(4)	4	(4)	
1	VIII. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	h	of the state of th
Tr	acheids differ from other tracheary elements in:	(71.) Fo	relimbs of cat, lizard used in walking; forelin
(1)		Of	whale used in swimming and forelimbs of b
(2)		use	ed in flying are an example of :
4	A	(1)	Adaptive radiation
(4)		(3)	Homologous organs
1000		(3)	Convergent evolution
) Sel	lect the correct matching of the type of the joint	(4)	Analogous organs
. WI	th the example in human skeletal system:	(4)	Attatogous organs
	Type of joint Example	72 147	atabases of the first of the second
(1)	Pivot joint - between third and fourth cervical	car	nich one of the following is a non - reduci bohydrate?
838	vertebrae	UH-	Sucrose
(2)	Hinge joint - between humerus	(2)	Lactose
-	and pectoral girdle	(3)	Ribose 5 - phosphate
(3)	Gliding joint - between carpals	_ (4)	Maltose
(4)	Cartilaginous joint - between frontal	0	Trial Coc
	and pariental	73. At sho	which stage of HIV infection does one usual w symptoms of AIDS?
A n	nan whose father was colour blind marries a	·AT	When the infected retro virus enters host cel
fath	man who had a colour blind mother and normal ner. What percentage of male children of this	(2)	
cou	ple will be colour blind?	(-)	When HIV damages large number of help T-Lymphocytes.
(1)	0%	(3)	When the viral DNA is produced by rever
(2)	50%	358	transcriptase.
(3)	75%	(4)	Within 15 days of sexual contact with a
(4)	25%	1.7	infected person.
		\cap	
A fe	w normal seedlings of tomato were kept in a croom. After a few days they were found to have	74.) Wha	at gases are produced in anaerobic sludg sters?
beco	ome white-coloured like albinos. Which of the	(1)	Methane, Hydrogen Sulphide and CO ₂
follo	wing terms will you use to describe them?		
Sty.	Embolised	(2)	Methane, Hydrogen Sulphide and O ₂
(2)	Etiolated	(3)	Hydrogen Sulphide and CO ₂
	Defoliated	~ (B)	Methane and CO2 only
(3)	Mutated	1	
(4)	tion of filiform apparatus is to:	75. Anos	kygenic photosynthesis is characteristic of:
(4)	Dun of fillform apparatus is to:	100	Spirogyra
(4) Func		- , /	-P 63
(4) Func (1)	Stimulate division of generative cell	(2)	Chlomodonico
(4) Func (1) (2)	Stimulate division of generative cell Produce nectar	(2)	Chlamydomonas
(4) Func (1)	Stimulate division of generative cell	(2) (3) (4)	Chlamydomonas Ulva Rhodospirillum

bs

ite

ng

illy

alls.

2056

ian

dge

Diakinesis

Pachytene

(3)

(4)

Assisted reproductive technology, IVF involves Match the following and select the correct option: 76. transfer of: Pioneer species Earthworm (a) Zygote into the fallopian tube. (1) Detritivore (ii) Succession (b) Zygote into the uterus. (2)Natality Ecosystem service (iii) (c) Embryo with 16 blastomeres into the fallopian (3) Pollination Population growth (iv) (d) tube. (d) (a) (b) (c) Ovum into the fallopian tube. (4) (iii) (ii) (iv) (1) (1) An example of ex situ conservation is: (iv) (i) 83. (ii) (2) (iii) (iii) Seed Bank (iv) (i) (ii) (1) (iv) Wildlife Sanctuary (ii) (iii) (4) (i) (2)Sacred Grove (3)A location with luxuriant growth of lichens on the National Park (4) trees indicates that the: trees are heavily infested The osmotic expansion of a cell kept in water is (1) 84. location is highly polluted (2)chiefly regulated by: location is not polluted (3) on Vacuoles trees are very healthy Plastids (2)(3) Ribosomes In vitro clonal propagation in plants is characterized Mitochondria (4) by: Northern blotting Which one of the following is wrong about Chara? (1) 85. Electrophoresis and HPLC Globule and nucule present on the same (2) (I) Microscopy plant. Upper antheridium and lower oogonium PCR and RAPD (2)Globule is male reproductive structure (3) An alga which can be employed as food for human Upper oogonium and lower round (4) being is: antheridium. Chlorella (1) The first human hormone produced by recombinant (2)Spirogyra 86. Polysiphonia DNA technology is: (3) (4) Ullothrix (1) Estrogen Thyroxin (2)Which one of the following growth regulators is Progesterone (3)known as 'stress hormone'? Insulin Ethylene (1) Which one of the following statements is not (2)GA₂ Indole acetic acid (3) correct? In retina the rods have the photopigment Abscissic acid (4) (1) rhodopsin while cones have three different The enzyme recombinase is required at which stage photopigments. 81. of meiosis: Retinal is a derivative of Vitamin C. Zygotene Rhodopsin is the purplish red protein present (1)Diplotene in rods only. (2)

Retinal is the light absorbing portion of visual

(4)

photo pigments.

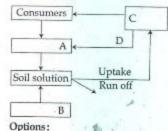
10 Which one of the following statements is correct? 195. Which vector can clone only a small fragment of Mango is a parthenocarpic fruit. DNA? A proteinaceous aleurone layer is present in (1) Yeast artificial chromosome maize grain. (2)Plasmid A sterile pistil is called a staminode. (3)Cosmid (4)The seed in grasses is not endospermic. (4) Bacterial artificial chromosome The zone of atmosphere in which the ozone layer is Pollen tablets are available in the market for: present is called: Breeding programmes (1) Mesosphere (2)Supplementing food 124 Stratosphere, (3) Ex situ conservation (3)Troposphere (4) In vitro fertilization (4) Ionosphere Select the correct option: Which one of the following fungi contains Direction of Direction of reading hallucinogens? RNA synthesis of the template DNA Amanita muscaria strand 124 Neurospora sp. 3'--5' 5'---3' Ustilago sp. (3) $5' \rightarrow 3'$ 5'---3' (4) Morchella esculenta 3'---5' (3) 3'---5'1 A scrubber in the exhaust of a chemical industrial (4) 5'-3' 3'--5' plant removes: particulate matter of the size 5 micrometer or The organization which publishes the Red List of above species is: gases like ozone and methane **IUCN** particulate matter of the size 2.5 micrometer (2)UNEP or less (3)WWF (4) gases like sulphur dioxide (4) **ICFRE** Select the Taxon mentioned that represents both A human female with Turner's syndrome: marine and fresh water species: (I) has one additional X chromosome. (1)Ctenophora (2) exhibits male characters. (2)Cephalochordata (3) is able to produce children with normal Cnidaria (3) husband. Echinoderms 10 has 45 chromosomes with XO. 100. When the margins of sepals or petals overlap one Match the following and select the correct answer: another without any particular direction, the (a) Centriole Infoldings in mitochondria condition is termed as: (b) Chlorophyll (ii) Thylakoids (1) Imbricate (iii) Nucleic acids Cristae (2) Twisted Valvate Ribozymes (iv) Basal body cilia or flagella Vexillary (c) (1)(i) (ii)(iv) (iii) 101. An aggregate fruit is one which develops from: (2)(i) (iii) (iii) (iv) Multicarpellary apocarpus gynoecium (iv) (iii) (i) (ii) (2) Complete inflorescence (iii) (3) Multicarpellary superior ovary Multicarpellary syncarpous gynoecium Approximately seventy percent of carbon-dioxide absorbed by the blood will be transported to the 102. Commonly used vectors for human genome lungs: sequencing are: (1)in the form of dissolved gas molecules AT BAC and YAC (2) by binding to R.B.C. (2)Expression Vectors as carbamino - haemoglobin (3)(3)T/A Cloning Vectors as bicarbonate ions (4)T-DNA

Non-albuminous seed is produced in:

(1) Castor
(2) Wheat
(3) Pea
(4) Maize

119. During which phase(s) of cell cycle, amount of DNA in a cell remains at 4C level if the initial amount is denoted as 2C?
(1) G₁ and S

(2) Only G₂
(3) G₂ and M
(4) G₀ and G₁


(120) Transformation was discovered by:

(1) Hershey and Chase

(2) Griffith

(3) Watson and Crick
 (4) Meselson and Stahl

121. Given below is a simplified model of phosphorus cycling in a terrestrial ecosystem with four blanks (A-D). Identify the blanks.

	A	B	C	D
-	Litter fall	Producers	Rock minerals	Detritus
124	Detritus	Rock minerals	Producer	Litter fall
(3)	Producers	Litter fall	Rock minerals	Detritus
(4)	Rock	Detritus	Litter fall	Producers

122. In a population of 1000 individuals 360 belong to genotype AA, 480 to Aa and the remaining 160 to aa. Based on this data, the frequency of allele A in the population is:

al. Based of his data, the frequency of allele A in the population is:
(1) 0.5
(2) 0.6
(3) 0.7
(4) 0.4
(A - M 8 -

(23.) Tubectomy is a method of sterilization in which:

(1) ovaries are removed surgically.

 small part of vas deferens is removed or tied up.

(3) uterus is removed surgically

small part of the fallopian tube is removed or tied up.

Which of the following is responsible for peat formation?

(1) Riccia

(2) Funaria

(3) Sphagnum

(4) Marchantia

125. Which one of the following shows isogamy with non-flagellated gametes?

(1) Ectocarpus

(2) Ulothrix

(3) Spirogyra

(4) Sargassum

Which one of the following is wrongly matched?

Translation - Using information in m-RNA to make protein.

(2) Repressor protein - Binds to operator to stop enzyme synthesis.

 Operon - Structural genes, operator and promoter.

 Transcription - Writing information from DNA to t-RNA.

127. Which of the following is a hormone releasing Intra Uterine Device (IUD)?

O(1) LNG-20

Cervical cap

(3) Vaula (4) Multiload 375

L102+299

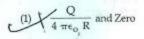
840

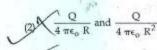
Options:

ed

	A	В	C	D
(1)	Crustaceans	Insects	Molluses	Other animal groups
(2)	Molluscs	Other animal groups	Crustaceans	Insects
(3)	Asects	Molluses	Crustaceans	Other animal groups
(4)	Insects	Crustaceans	Other animal groups	Molluses

- Male gametophyte with least number of cells is present in:
 - (1) Funaria
 - (2) Lilium
 - (a) Pinus
 - (4) Pteris
- 130. The shared terminal duct of the reproductive and urinary system in the human male is:
 - (1) Ureter
 - (2) Vas deferens
 - (3) Vasa efferentia
 - (4) Urethra
- (131) Injury localized to the hypothalamus would most likely disrupt:
 - co-ordination during locomotion.
 - (2) executive functions, such as decision making.
 - (3) regulation of body temperature.
 - (4) short-term memory.
 - Select the correct option describing gonadotropin activity in a normal pregnant female:
 - (1) High level of FSH and LH facilitate implantation of the embryo.
 - High level of hCG stimulates the synthesis of estrogen and progesterone.
 - High level of hCG stimulates the thickening of endometrium.
 - (4) High level of FSH and LH stimulates the thickening of endometrium.


3/


The initial step in the digestion of milk in humans is carried out by?

- (1) Trypsin
- (2) Rennin
- (3) Pepsin
- (4) Lipase
- (134.) The motile bacteria are able to move by :
 - (1) flagella
 - Of cilia
 - (3) pili
 - (4) fimbriae

- 135.) Person with blood group AB is considered as universal recipient because he has:
 - (1) both A and B antibodies in the plasma.
 - no antigen on RBC and no antibody in the plasma.
 - (3) both A and B antigens in the plasma but no antibodies.
 - (4) both A and B antigens on RBC but no antibodies in the plasma.
- 136. A conducting sphere of radius R is given a charge Q. The electric potential and the electric field at the centre of the sphere respectively are:

Both are zero

(4) Zero and $\frac{Q}{4.\pi\epsilon_0 R^2}$

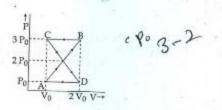
0

If n₁, n₂ and n₃ are the fundamental frequencies of

three segments into which a string is divided, then the original fundamental frequency n of the string is given by:

(1)
$$\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} + \frac{1}{\sqrt{n_3}}$$

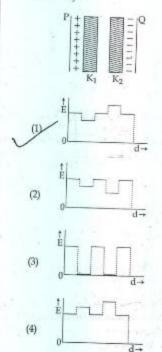
(2)
$$\sqrt{n} = \sqrt{n_1} + \sqrt{n_2} + \sqrt{n_3}$$

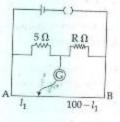

(3)
$$n = n_1 + n_2 + n_3$$

$$(4) \frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$$

Copper of fixed volume 'V' is drawn into wire of length 'l'. When this wire is subjected to a constant force 'F', the extension produced in the wire is ' Δl '. Which of the following graphs is a straight line?

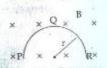
- (1) Al versus 12
- (2) Δl versus 1/12
- (3) Δl versus l
- (4)Δl versus 1/l


A thermodynamic system undergoes cyclic process ABCDA as shown in Fig. The work done by the system in the cycle is:


- 2Po Vo
- Zero

14

Two thin dielectric slabs of dielectric constants K_1 and K_2 ($K_1 \le K_2$) are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field 'E' between the plates with distance 'd' as measured from plate P is correctly shown by:



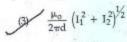
The resistances in the two arms of the meter bridge are $5\,\Omega$ and $R\,\Omega$, respectively. When the resistance R is shunted with an equal resistance, the new balance point is at 1.6 l_1 . The resistance 'R', is:

- (1)15 Ω
- (2)20.0
- (3) 25Ω
- (4) 10 Ω

142. A thin semicircular conducting ring (PQR) of radius 'r' is falling with its plane vertical in a horizontal magnetic field B, as shown in figure. The potential difference developed across the ring when its speed

- Bv = r2/2 and P is at higher potential (1)
- πrBv and R is at higher potential (2)
- 2rBv and R is at higher potential (3) Zero
- A particle is moving such that its position 143. coordinates (x, y) are

(2m, 3m) at time t = 0, (6m, 7m) at time t=2s and (13m, 14m) at time t = 5 s.

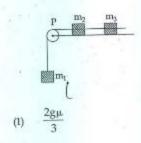

Average velocity vector $(\overrightarrow{V}_{av})$ from t=0 to t=5 s is:

- (1) $\frac{7}{3}(\hat{i}+\hat{j})$
- $2(\hat{i}+\hat{j})$
- $\frac{1}{\pi} \left(13\hat{i} + 14\hat{j} \right)$

bridge istance ne new is:

Two identical long conducting wires AOB and COD are placed at right angle to each other, with one above other such that 'O' is their common point for the two. The wires carry I1 and I2 currents, respectively. Point 'P' is lying at distance 'd' from 'O' along a direction perpendicular to the plane containing the wires. The magnetic field at the point P' will be:

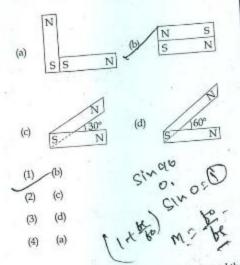
- $\frac{\mu_0}{2\pi d}$ (I₁ + I₂)
- $\frac{\mu_0}{2\pi d}\left(I_1^{\;2}-I_2^{\;2}\right)$

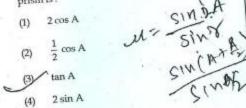


(4)
$$\frac{\mu_0}{2\pi d} \left(\stackrel{I_1}{\downarrow}_{I_2} \right)$$

A system consists of three masses m₁, m₂ and m₃ 145. connected by a string passing over a pulley P. The mass m1 hangs freely and m2 and m3 are on a rough horizontal table (the coefficient of friction = μ).

> The pulley is frictionless and of negligible mass. The downward acceleration of mass m, is:


$$(Assume m_1 = m_2 = m_3 = m)$$

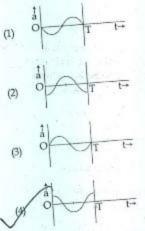

- In an ammeter 0.2% of main current passes through the galvanometer. If resistance of galvanometer is G, the resistance of ammeter will be:

16

147. Following figures show the arrangement of bar magnets in different configurations. Each magnet has magnetic dipole moment m. Which configuration has highest net magnetic dipole moment?

- If the focal length of objective lens is increased then magnifying power of:
 - microscope and telescope both will increase.
 - microscope and telescope both will decrease.
 - microscope will decrease but that of telescope (3) will increase.
 - microscope will increase but that of telescope (4)decrease.
 - The angle of a prism is 'A'. One of its refracting surfaces is silvered. Light rays falling at an angle of 149. incidence 2A on the first surface returns back through the same path after suffering reflection at the silvered surface. The refractive index μ, of the prism is:

The oscillation of a body on a smooth horizontal surface is represented by the equation, 150.


$$X = A \cos(\omega t)$$

where

X = displacement at time t

ω = frequency of oscillation

Which one of the following graphs shows correctly the variation 'a' with 't'?

Here a = acceleration at time t

T = time period

The given graph represents V - I characteristic for a semiconductor device.

Which of the following statement is correct?

- It is for a solar cell and points A and B represent open circuit voltage and current, respectively.
- It is for a photodiode and points A and F represent open circuit voltage and current (2) respectively.
- It is for a LED and points A and B represer open circuit voltage and short circuit curren respectively.
- It is V I characteristic for solar cell where point A represents open circuit voltage ar point B short circuit current.

7 5 PM

earth with distance (r) from centre of earth is correctly represented by:

Dependence of intensity of gravitational field (E) of

- The number of possible natural oscillations of air column in a pipe closed at one end of length 85 cm whose frequencies lie below 1250 Hz are: (velocity of sound $=340 \text{ ms}^{-1}$) 5
 - (2)7 (3) (4)
 - Two cities are 150 km apart. Electric power is sent from one city to another city through copper wires. The fall of potential per km is 8 volt and the average resistance per km is 0.5 Ω. The power loss in the wire is:
 - 19.2 kW 19.2 [
 - 122kW .
 - 19.2 W
- A beam of light of \(\lambda = 600\) nm from a distant source 155. falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between first dark fringes on either side of the central bright fringe is:
 - 1.2 mm
 - 2.4 cm (2)2.4 mm
 - 1.2 cm
 - (4)If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are:
 - IF V T-21

 - (4)

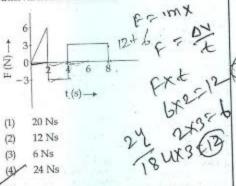
- The barrier potential of a p-n junction depends on:
 - type of semi conductor material amount of doping
 - temperature (c) Which one of the following is correct?
 - (b) only
 - (b) and (c) only (2)(a), (b) and (c)
 - (3)(a) and (b) only (4)
- The Binding energy per nucleon of Li and 2He nuclei are 5.60 MeV and 7.06 MeV, respectively. In the nuclear reaction ${}_{3}^{7}\text{Li} + {}_{1}^{1}\text{H} \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{4}\text{He} + Q$ the value of energy Q released is:
 - -2.4 MeV 8.4 MeV
 - (2)17.3 MeV (3)
 - (4)19.6 MeV
- If the kinetic energy of the particle is increased to 16 times its previous value, the percentage change in the de-Broglie wavelength of the particle is:
 - (1)(2)60 50 (3)
 - 25 (4)
- Light with an energy flux of 25×104 Wm-2 falls on 160. a perfectly reflecting surface at normal incidence. If the surface area is 15 cm2, the average force exerted on the surface is:
 - 2.50×10⁻⁶ N (1) 1.20×10-6 N (2)3.0×10-6 N (3)
 - 1.25×10-6 N (4)In a region, the potential is represented by V(x, y, z) = 6x - 8xy - 8y + 6yz, where V is in volts and x, y, z are in meters. The electric force
 - experienced by a charge of 2 coulomb situated at point (1, 1, 1) is: 30 N (1)
 - (2)24 N 4√35 N

 - A speeding motorcyclist sees traffic jam ahead of 162. him. He slows down to 36 km/hour. He finds that traffic has eased and a car moving ahead of him at 18 km/hour is honking at a frequency of 1392 Hz. If the speed of sound is 343 m/s, the frequency of the
 - 1372 Hz (1)

honk as heard by him will be:

- 1412 Hz (2)
- 1454 Hz (3)
- 1332 Hz

164.


18

The ratio of the acclerations for a solid sphere (mass 'm' and radius 'R') rolling down an incline of angle '6' without slipping and slipping down the incline without rolling is:

2:5

5:7

The force 'F' acting on a particle of mass 'm' is indicated by the force-time graph shown below. The change in momentum of the particle over the time interval from zero to 8 s is:

20 Ns (1)

12 Ns

6 Ns (3)

24 Ns

In the Young's double-slit experiment, the intensity 165. of light at a point on the screen where the path difference is \(\lambda\) is K, (\(\lambda\) being the wave length of light used). The intensity at a point where the path difference is λ/4, will be:

(4)

166.

A balloon with mass 'm' is descending down with an acceleration 'a' (where a < g). How much mass should be removed from it so that it starts moving up with an acceleration 'a'?

A potentiometer circuit has been set up for finding 167. the internal resistance of a given cell. The main battery, used across the potentiometer wire, has an emf of 2.0 V and a negligible internal resistance. The potentiometer wire itself is 4 m long. When the resistance, R, connected across the given cell, has

infinity

9.5 \, \Omega. (ii)

the 'balancing lengths', on the potentiometer wire are found to be 3 m and 2.85 m, respectively.

The value of internal resistance of the cell is:

(1) 0.95Ω

0.5 \O (2)

 0.75Ω (3)

 0.25Ω

A monoatomic gas at a pressure P, having a volume V expands isothermally to a volume 2V and then adiabatically to a volume 16V. The final pressure of the gas is: $(take \gamma = 5/3)$

P/64 (2)

16P

169.

170.

(u) 1 (16)3 A certain number of spherical drops of a liquid of radius 'r' coalesce to form a single drop of radius 'R' and volume 'V'. If 'T' is the surface tension of the liquid, then:

energy = $3VT\left(\frac{1}{r} + \frac{1}{R}\right)$ is absorbed.

(2) energy = 3VT $\left(\frac{1}{r} - \frac{1}{R}\right)$ is released.

energy is neither released nor absorbed.

energy = $4VT\left(\frac{1}{r} - \frac{1}{R}\right)$ is released.

A body of mass (4m) is lying in x-y plane at rest. It suddenly explodes into three pieces. Two pieces, each of mass (m) move perpendicular to each other with equal speeds (v). The total kinetic energy generated due to explosion is:

Hydrogen atom in ground state is excited by a monochromatic radiation of A = 975 A Number of spectral lines in the resulting spectrum emitted will be: (1)

10 (3)3 (4)

A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass = 5.98×10^{24} kg) have to be compressed to be a black hole?

- 10-6 m (1)
- $10^{-2} \, \text{m}$ (2)
- 100 m (3)
- 10-9 m (4)

A projectile is fired from the surface of the earth with a velocity of $5 \, \mathrm{ms}^{-1}$ and angle θ with the horizontal. 173. Another projectile fired from another planet with a velocity of 3 ms-1 at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is (in ms -2) is: (given g=9,8 ms-2)

5.9 (1) 16.3 (2)

110.8 35

(4) Certain quantity of water cools from 70°C to 60°C in the first 5 minutes and to 54°C in the next 5 minutes. The temperature of the surroundings is: 70+60) (P)

20°C (1)

42°C (2)

JULC 45°C

A solid cylinder of mass 50 kg and radius 0.5 m is free to rotate about the horizontal axis. A massless

string is wound round the cylinder with one end attached to it and other hanging freely. Tension in the string required to produce an angular acceleration of 2 revolutions s-2 is: 50 N

78.5 N (2) 157 N (3)

25 N (4)

Steam at 100°C is passed into 20 g of water at 10°C. When water acquires a temperature of 80°C, 176. the mass of water present will be:

Take specific heat of water = 1 cal $g^{-1} \circ C^{-1}$ and latent heat of steam = 540 cal g-1]

- 31.5 g
- 42.5 g
- 22.5 g
- 24 g (4)

A radio isotope 'X' with a half life 1.4×10^9 years decays to 'Y' which is stable. A sample of the rock from a cave was found to contain 'X' and 'Y' in the ratio 1:7. The age of the rock is:

- (1) 3.92 × 109 years
- 4.20 ×109 years
- 8.40 × 109 years
 - 1.96 × 109 years

A transformer having efficiency of 90% is working on 200 V and 3 kW power supply. If the current in the secondary coil is 6 A, the voltage across the secondary coil and the current in the primary coil respectively are:

- 450 V, 15 A 450 V, 13.5 A
- 600 V, 15 A 300 V, 15 A
- When the energy of the incident radiation is increased by 20%, the kinetic energy of the 179. photoelectrons emitted from a metal surface increased from 0.5 eV to 0.8 eV. The work function

M= 5 . 8 4 2 mg 2 of the metal is ? 1:0 eV 13eV 15eV 0.65 eV

The mean free path of molecules of a gas, (radius 'r') 180. is inversely proportional to: (1)

(2)

Mrus X 2°8 / XX